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TECHNICAL NOTE NO. 1239

WIND-TUNNEL INVESTIGATION OF THE EFFECT OF POWER AND FLAPS
ON THE STATIC LONGITUDINAI STABILITY CHARACTERISTICS
OF A SINGILE-ENGINE LOW-WING ATRPLANE MODEL

By Arthur R. Wallace, Peter F. Rossi; -
end Evalyn G. Wells '

SUMMARY

As part of a comprehensive investigation of the effect of
power, flaps, and wing position on statlc stability, tests were
mede In the Langley T~ by 10-foot tunnel to determine the longi-~ '
tudinal stability chsracteristics with and without power of & T T T
typical low-wing, single-engine airplane modsl with flaps neutral,
with a full-span single slotted flap, and with a full-span double ) T
glotted flap. The horizontal tall incorporated a leading-edge =
slot for the flap-deflected conditions and wes placed high to CT
avold the slipastream. Soms data are pressnted for the 1solated
horizontal tail. With the double slotted flap deflected some
glr-flow surveys were made in the region of the tail and the
wing stall was studled by means of tufts.

With fleps deflected, 1lift increments wers lincreased by 0.16
for the single slotted flap and 0.42 for the double slotted flap
when power wes applied. Powsr also increases the slope of the
untrimmed 1ift curves (increase of 0.034 for the double-slotted- _ o
flap condition).

Doeflecting the flaps increased longltuwdinal stebility slightly.
The windmilling propeller shifted the neutral point forward from 1 to
5 percent meen ssrodynamic chord. The effect of power on longi~
tudinal stebility was small ekcept for an erratic effect with the
single slotted flap and at very high 1lift coefficlents with the
double slotted flap. The success in obtaining powsr-on stability
with the double slotted flap was attributed to the fact that the
teil was out of the slipstream. The stabilizer nose slot improved
the stability and dslayed the tail stall but reduced the elevator
effectivensss. Sufficient control was provided by the tail as
tested. In order to avold possible tail stell, however, the flaps
should be deflected slowly. A larger tall volume would be desirable
to provide the nscessary tall loads encountersd at more forward
center-of -gravity locations. -
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INTRODUCTION

With the development of higher-powered airplane engines, the
effects of power on alirplane stebllity have become of considerable
importeance. The propeller itself has an apprecilasble sffect cn
airplane stabllity even when it is in the windmilling condition.
When power is applied, the effect of the propeller is much greater.
The effect of power om alrplane stabllity may be divided into two
parts: flrst; the direct effects of the propeller - that is,
thrust, torgue, normal force, and so forth -that act on the alrplane
through the propeller shaft; end second, the effecte of the slip-
stream on the other parts of the airplene. BSome of the effects of
powsr are shown in references 1 and 2.

Another tremd in seronsutical progress is the development of
better high-1ift devices to improve performsence. Recent work has
shown that satisfactory lateral-control devices can be developed
for full-span.flaps, which meke the widespread use of such flaps
probeble. ' Flaps are known to increase the difficulity of obtaining
longitudinal trim and stability for a1l flight conditlions and to
increase the adverse effects of powsr in many cases. The use of
higher-1ift flaps can be expected to incroase tho forsgoing 4iffi-
culties until they become very importent.

The location of the wing on the fuselage has pronounced
effects on airplano stabllity. High-wing airplanes tend to have
more longitudinal stebility at mediwm and high 1ift coefficionts.
The vertical location of the wing alsc influences the offectire
digeg§al end vortlcal tail effectiveness appreciably (roferences 3
an . -

The present paper is the first of a series on an investigation
of the effects of powor, flap deflection, and vertical position of
the wing on longitudinal and lateral etability and control. The
results preosented hereln include only the longitudinal stability
end control of the model as a low-wing alrplans,

COEFFICIENTS AND SYMBOLS

The resulis of the tests are prosented as standard -NACA coeffi-
clente of forces and moments. Pitching-moment- coefficients are
gilven about the center-of-gravity location shown in Pigure 1
(26.7 percent M.A.C.)., The data are referred to the gtability axes,
which are a system of axes having thelr -origin at the conter of
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gravity and in which the Z-axls Iis in the plane &f symmetry end
perpendicular to the relative wind, the X-axls is in the plane of
symmetry and pcryvendlcular to the Z-axls, and the Y-axis is perpen-
diculer to the plene of symmetry. The positive directions of the
stebility axes, of angular displacemenis of the alrplane and con-
trol surfaces, and of hinge moments are shcwn in figure 2.

The coefficiente and symbols are defined as follows:
Cq, 1ift coefficient (Lift/g8)

CI maximum 1ift coefficlent

&0y, incremon’c in 3ift coefficlent due to flap deflection
acy
C slope of 1ift cuxrvse
Lq' op dﬁj)
th horizontal-tail 1ift coefficient (Lt,’qtst)
Cx longitudinal-forece coefficient (X/gS) .
Cp pltching-mement cosfficlent (M/qSct)
Cmo tail-off pltching-moment coefficient
Ca, pitohing-mament coofficient about the effective tail-off "
aerodynanic center T
Cmt pitching-mament coefficient providod by the 'bail
(Cm'bail on ~ “mtai1 orr)
Che elevator hinge-mcment coefficient (He Jabe36%)
To! effective thrust coefficient based on wing erea (Teff /qs)
Qe torque coefficient (Q/cVoD3)

V/n'.D propeller advance-dismeter ratilo
1 propulsive efficlency (TgepV /27nQ)

Vg horizontal-tail volums coefficient (8414 /Sct)
Lifs = -3
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)Z{ forces along axes, pounds

M mament about Y-axls, pound-feet

Ly horizontal-tall 11ft, positive npward, pounds
H, elevator hinge monent, pound-fest

Tgrp Propeller effective thrust, pounde

Q propeller torgue, pound-fect

W airplane weight, pounds

Ry effective Reynolds numbexr

q free-gtream dynamic pressure, pounds per square foot (%—2->

a effective dynamic pressure at tall, pounds per square foot
s wing area (9.4%% sq £t on model)

Sy horizontal-tail area (1.92 sq ft on model)

c alrfoll section chord, feet

ct wing mean asrcdynamic chord (1.36 ft on model)

&, elevator root-mean-square chord back of hinge line (0.26# £t
on model)
b wing epan (7.458 ft on model) unless otherwise designated

be elevator span along hinge line (2.546 £+ -on model)

14 taill length measured fram center ofgravity to quarter-chord
point of horizontal tail mean aercdynamic chord (3.29 £t

on model) :
v alr velocity, feet per second
vy indicated airspeed, miles per hour \1 167
Vg rate of descent, feet per second

indicated rate of dsscent, feet per second (VO Vj)
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D propeller dlameter (2.00 £+ on model)

n -propellier speed, rps

o ratin of air density at altlitude to alr density at sea level
P messe denslty of air, slugs per cublc foot
@ angle of attack of fuselage center line, degrees

@y  engle of attack of teil chord line, degrees
€ angle of downwash, degrees

1. angle of stabilizer with respect to fuselage center lins,
positive when tralling edge is down, degrees

8  elevator deflection, degrees

Bf deflettlon of forward part of double slotted flap with
1 respect to alrfoil chord, degrees

Sf deflection of rearward part of double elotted flap with
2 respect to forward part, degrees .

B propeller blade engle at 0.75 radius (25° on mod.el)

bs Ty tall-off aerodynamic-center locetion, percent wing mean
aerodynamic chord

Dy neutral-point location, percent wing mean aercdynamic chord
(center-of -gravity location for neutral stability in
trimmed flight)

Subscript:

b trimmed conditions with center of gravity st the neubtral point
MODEL, AND APPARATUS

The tests were made in the Langley 7- by 1l0-foot tumnel

described in references 5 end 6. No landing gear was used for

the tests. Pigure 1 is a three-view drawing of the model. The

wing was fitted with a 4O-percent-chord double globtted flap covering
93 percent of the span and was designed from the data of reference 7,
For the flap-neutrel tests the flap wes réetracted and the gaps werd T
faired to the airfoil conbtour with modeling clay. TFor the s e-
slotted-flap tests, the rear part of the flep was deflected 30,
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and for tests with the double slotted flap both parts of the flap
were doflected 30° (see detail of flap in fig. 1). For the flap-
deoflected conditlions, the gap between the inbosrd ends of the flap
(directly below the fuselage) was sealed with Scotch cellulosc tapo.

A moro detailed drawing of the tall assembly is shown in
figure 3. The horizontel tall had an inverted Clark Y section
and wes equlipped with a Fixed lesding-ecdge slot. The slat had
a constant chord but was located to approximato. the beat slot
shape glven in reference 8. The reason for the unusually high
tail location (figs. 1 and 3) 1s given in the section entitled
"Digcusslon." The isolated tail was mounted in .the tunnel as shown
in figure 4. '

Power for the 2-foot-diamster, three-blade, right-hand, metal
propeller was obtained from a 56-horsepower water-cooled induction
motor mounted in the fuselage. Motor gpeed was measured by meens
of an electric.tachometsr. The dimensionel characteristice of the
propeller are given 1n figure 5.

Elevator hinge momente were meesured by means of-an electric
gtraln gage mounted in the stabllizer. The dynamic pressure and
downwash angles in the reglon of the tall wore measured with a
benk of pltot-pltch tukes commeched to a direct-reading multiple~
tubo mencmeter.

TESTS AND RESULTS

Test Conditions

The tests were made in the Langley T- by 10-foot tunnel at .
dynemic pressures of 12.53 pounds per equare foot for the power-on
tostes with tho double slotted Plap and of 16.37 pounds per squars
foot for all other tests, which correspond to alr-speeds of aboul
T0 and 80 miles per hour, respectively. The test Reynolds numbhers
were about 875,000 anil 1,000,000 based on the wing mean serodynamic
chord of 1.36 feet. Because of the turbulence factor of 1,6 fur the
tunnel, the effective Reynolds mumbers (for maximm 1ift coefficients)
were about 1,400,000 and 1,600,000,

Corrsctions

All power-on dats have been corrected for tares caused by the
model support gbtrut.: No tare corrections wore obtained for the
power-off testes because they have been found to be relatlively emall
and erratlc on similer models with flaps deflected; thus amission
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of the power-off tare corrections is not belleved to changs seriously
the resulte. The test resulte for the lsolated horizontal tail were
corrected for tares obtained by testing the teil assembly with the ~
horizontal tall removed. dJet-boumdary correctioms have been applied
to the engles of attack, the longitudinal-force coefficlents, the
tail-on pitching-moment coefficients, emd ths downwash engles measured
by surveys.

The corrections were ccmpubed as follows:

fa = 57,38, 201, (dsg)

2oy = -8, & or°

20 X - EC—Ec '
N T

EE S
Ae = 57.3 "’?!—t—]a—c-c];

where

S, Jet-boundary correction factor at wing (0.1125)

Sp total Jet-boundary correction at tail (varies between 0,200
and 0.210)

8 model wing area (9.4l sq Ft)

c tunnel. cross-sectional ares (69.59 sq f+)

BCm/Bit change in pitching-moment coefflclent per degree change
in stebilizer setting as determined In tests

94/a ratio of effective dynemic pressure over the horizontal tail

to free-stream dynemic pressure -

-All corrections wers added to the test data. The equationsg for
the piltching-moment and downwash corrections are explained in refer-
ence 9. ' .
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Procedure

Propeller celibrationes were made by measuring the longltudinsl
force with the model at zero angle of abtack, the flap neutral, and
the tail removed for a range of propeller speeds. The effectivs
thrust coefficient was then computed from the relation

t - -
Tt = CX(propeller operating) G-X(p:r'ope}_ler:r‘emoved,)

Motor torque was also measured and propeller efficiency was com-
puted. The propeller calibration is shown in figure 6.

Pover-on tests wers mede with T,* varying with Cj, according
to figure 7. A straight-line varlation of T,* with C; was used
because this variatlon approximastes the variation for airplanes with
constant-gpsed propellers operating under conditions of constant
power, Preliminary tests were made by settlng the propeller speed
to obtein a given valus of T,* and then varylng the angle of
attack @ until the value of Cp corresponding to the set valus
of T,*, 1indlcated in figure 7, was read on the scals. Subsequont
power-on tests with the same flap setting were made at the same
propeller speeds and anglses of attack as the preliminary tests.

The approximate amoumt of airplane engine horsepowsy repre-
sented 1s given in figure 8 for various model sceles and wing
loadings. The amount of powor represented was limlted dby the
maximum output of the model motor and the. desire to keep the tumnel
air velocity as high as practical so that a reasonsble value of
Reynolds number could be malnbtained. The amount of alrplans power
represented will be found low for meny cases.

The value of T,' for the tests with the propeller wind-
»illing was about -0.005.
Presentation of Results

An outlline of the figures presentling the test results 1s as
follows:

Figure

Stebllizer tests « « ¢ ¢ ¢« ¢ o o o e s s & o s e & v s g - 11

Tuft studies (double slotted flap only) e e e s e e e e 12

Effect of removing flap sectlong + ¢« ¢« ¢ o « « ¢ o o » &+ & 13
Landing characteristice:

Effect ofpower end flaps . . e e e e e e e e e 14

Effect of scale and wing lo&ding P r et e e s e e s 15



NACA TN No. 1239 9
Figure
Neutral points:
Effebt Of fl&'ps s e 8 & 0o o @ " & 4 8 e e e 8 8 W & e 16
Effect of POWEY « ¢ ¢ o« o « & s e 4 e e a e s e 17
Increments due to power . . . C e e vt e e s e e e s s 18
Staebility parameters:
EffECt of flaps [ ] - L] L 3 L] L] L . . L ] L ] ®> L] L] L] . L] L ] L ] 19
Effect Of pOWeI‘ . [ . L] [ ] . » . * . . L] * . L . ] - . 20
Increments due to POWOY « o o » « ¢ W s s » * & ¢ o & 21
Air flow at tail (double slotted flup oniy): C
Dynamic-pressure contours . . e ¢ 4 ¢t & & 3 a s s s 22 -23
Downwash Oon'touI‘S @ & 8 & * e e o & * ® e e s o s & 12’4' - 25
Isolated-tall tests « o « o« o 26
Elevator tests [ 3 . L3 . L] . e . * . ¢ . L) « 3 . L) L] [ 3 -27 - 29
Illustrative solution of .qi/q~ and €3
Stebilizer tests « & & e ¢ @ s & » ® & e & & & & o @ 30
Chart for graphical method . . * e 4 e s e s 3t
Vector diagrems for nsutrael-point equa’cion o« v s s e s e 32
DISCUSSION
Lift Cheracteristics
The following table shows the effect of flaps and power on
1ift characteristics (figs. 9 to 11):
operatt S DI
Flep perating tall off | tail off o
condition (q’ = 0°) (@ = Oo) (¢ = oo)
Neubral 0.27 ———— 0.072
Single slotted | ~Propeller off . 1,34 1.07 .086
Double slotted | | 2.1k 1.87 07k
Nowbral = 27 ———- LOTh
Single slotted Propeller windmilling 1.33 1.06 085
Double slotted z‘[ 2,1k 1.87 0Tk
Neutral 25 ———— 087
Single slotted | »Power on 1,47 1.22 097
Double slotted | j 2.54 2.29 .108

Meximum 11ft was not attained for all conditions; hence com-

parison 18 not possible.

Values of trim 1ift incroments not pre-

sented In the preceeding teble will be lower than untrimmed 1ift
Increments because of the large down loads required of the tall,
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From the foregoing table 1t can be seen that with flaps
deflscted. the application of power caused a marked increase in
lift-coefficient increment (0.16 with the single slotted flap
and 0.h2-with the doudble slotted flap). Power also produced a
congiderable increase in the slope of the untrimmed 1ift curves,
especially for the doubls-slotted-flap condition. The noticeable
effect of power with full-span single and double slotted flaps
deflected can be explained, in part, by the increased dynanmic
pressure over the wing assocleted with the high 1ift coefficlents
and by the improved flow over the rear flap as shown by the tuft
gtudies of figure 12. With power off, large perts of the rear
flap are astalled throughout the engle-of -attack range elthough the
rear £lap unstdlls when the main part of the wing begins to
gtall. The effects of the model scale ars such that the full-scale
airplans may not experience a stalled resr flap.

The tunnel-wall effect and the Reynolds nuuwber may be con-
tributing factors in making the wing tips stall first-— Computa-
tions indicate that the Induced upwash at the wing caused by the
tunnel walls increased the effective angle of attack of the tip
about 0.3Cr, degrees thus glving the wing an effective washin.

Teste wore made with the single glotted flep to dstermine the
effect of removing the section of flap beneath the fuselage
(fig. 13). The sketches included in this figure show the flap
configurations used. An appreciable loss in 11ft at a glven angle

of attack ocours with the gap of 8.1 inchea. Although 12%' percent

of the wing area i1s included in the removed part of the flap and
of the wing immediately ahead of this flap, the observed loss In
flap 1ift Increment 1s only about 5 porcent; thus apparently

over 50 percent of the flep rift 1ncrement is carried acrogs the
gap. For the gep of 0.6 inch no change was observed in lift:

Lending Characteristica

Landing characterlistics were computsd for the model based on
an effective Reynolds number cf 8,000,000 (approximately full size).
It was found that a wing loading of approximately 90 pounds per
square foot could be attained without exceeding the rocommended
maximum rate of descent of 25 feet per second (refersnce 10) with
power off and either with flap neutrael or single slotted flap
deflected (fig. 14). With the double slotted flap deflscted, &
wing loeding of approximetely 40 pounds por square foot may ba
attained without exceeding a rate of descent of 25 fect psr seczond,
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With the application of power corresponding to the horsepower _ -
in figure 8, with flap neutral, and with single slotted flap deflected,
the eirplane will tend to galn altitude over most of the 1ift rangs.

The power required to maintain an indicated rate of descent of __
25 feet per socond et 0.8L,y (refersnce 10) and at various wing T
loadings is shown in figure IS for three di1fferent model scales
(L4, 1/5, end 1/8 scales). This figure, derived from the model
data of figure 14, also shows the wing loadings that may be attained
without exceeding o maxlmwm rute of descent of 25 feel per second _ T
with power off. With the application of flaps the powsr must bs
increased to maintain an indicated rate of descent of 25 fest per
gsecond at a given wing location. ' '

Longitudinal Stability

Method. of analysis.- The static longitudinal stability cf the
model is indicated by the plots of the varlation of neutral-point
location with Cp (figs. 16 and 17). The noutral points were
cbtained by the metheds given in refercnces 11 and 12 from data B
shown in figures 9 to 11 and 27 to 29. B

From the aforementioned references it can bo seen that the -
hinge-momsnt charscteristlcs of the tall ars determining factors in
calculating stick-free stebility. Because hinge-moment parameters T
can vary widely for similar tsil plan forms, details of the stability '
computations will be concentrated on the stick-fixed condition.

The quantities which affect the static longitudinal stablility .
(stick fixed) have boen separated into the various camponents of -
the following equethion: ' ' o

Py £ ae)
T Gy T & Cng
= no + ~ o .,-—-i-. e (l)
> d(qy /2) o, - 41
—_— a(ag/a) /ag/a
acy acy,
—— 1 - —_— dCL CL
8a /y /e
L CL,

The derivation of equation (1) 1s given in the appendix. The terms
of the equation, which have been found useful in analysis, are
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referred to herein as sbatic-longitudinal-stabllity parameters. The
longltudinal stability paremeters were obtained frcm the tall-off
and stabllizer tests and isolated tall tests presented herein. As
the slope of the 1ift curve for the tail is nonlinear, a speclal :
methed was used to campute qp/g and € at the tail. (See appendix.)
The effect of flap deflection and power on the parsmeters are pre-
pented in flgure 19. 7The same resulis have been replotted in fig-
ure 20 to show the effect of power at various flap deflections.
Results of surveye of dynemic pressure and downwash angles made wilth
the double slotted flap are shown by points in the plots of fig-
ures 19{c) and_20{c) for camparison. The surveys, however, wero
made in only two vertical planes 6 inches on either gide of the model
center line end thus 3o not represent averages across the span as do
the vslues obtained from stabilizer tests. In the subsegquent discus-
gion the effect offlap deflection and power on the neubtrel-point
locatlon will be explalned by msans of the paremeters.

Congiderations involved 4n tall locaticn.- Preliminary estl-
nates obtainod from the air-flow surveys of flgures 22 to 25 showed
that the model with the double slotted flap would be very unsteble
with power on at all 1ift coefficients 1f the tail were placed in
the conventional low position. The main destahilizing Influence ia
shown by the third term of the right-hand side of equation (1) which
would produce Instabllity at all 1ift coefficlionts instead of-only
at high 1ift coefficionts. The large negatlve value o:E__Cme con-~

d )
bined with & normal posgitive valus of __%%iﬂ_ when the tail is In

L
the slipstream resulis in a large destabilizing effect. For this
reason the tail was placod as high as practical in an attempt to

d(qt/Q)
remove 1t fra%A he a%ipstream end thus to reduce ————~ to a low
94/9 . - L
value. (See -———— in fig. 23.) As shown in figurs 20(c),
a(ay/a) £y,

iy, was reduced to a low valuo and stebllity was maintained up

to a fairly large value of 1ift coofficlent. Lower and more FAvor-
eble values of A¢/Aa  would also be encountored at the higher tail
location (fig. 25).

Effect of tail glot.~ The use of a slot on the nose of the
horizontal tail improved the stabilliy as shown in figure 11 by the
increased slope of the C_ curve over that for the tail with the

slot filled., This stabllizing effect is sxplained by the isolatcd-
tail data (fig, 26) which ehow a higher valus of dCr, /day for the
slot-open condition. The neutral points presented fur flap ncutral
and single alotted flep were obtained with the tall slot filled bub
the neutral points for the double slotted flap werse cobtained with
the tall slot open.
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Effect of flap deflection.- With power off, deflecting the
flap shifts the neutral point rearward so thet Ehe stability is
8lightly increesed. One csusc of the rearward shift is shown in
figures 19(a) and 15(b) to be the shift in ny with flep deflec-
tion. In the case of the double slotted flsp another factor which
contributes to the rearward shift of n, 1ie the fact that tke tail
alot was open and the slope of the taill Llift curve was thus
increased. The largeqvaésle of Cp, 1e of little significance with

'b

powar off because — is small. With power on, the same
stebllizing trend of flep deflection is shown except that a
peculier neutral-point variation is shown for the single slotted
flep (fig. 16(c)). The noutral-point variation with single slotbted’
flep was traced to the variation of defda (fig. 19(c)) with Cjp.
Although the stabilizing influence of n, became greater as the
flaps were deflucted with power un, the increase in dCL/du. reduced
the rearwerd shift of neutral point caused by the flaps to about the
same order of magnituvde es the shift with power off (£1g. 19(c) a.nd.
eguation (1)). )

Effect of power.- When the propeller is added and allowed to
*windmill the neutral point shifts forward between 1 and 5 percernt
msan aerod.yna.mio chord (fig. 17). About 1 percent of this shift in T
neutral point was traced to the forward shift of n, when the ’
propeller was added. The remainder of this shift can be accounted
for by the slight increases in de€ /o.cr, end (4Cy, /dm)b with propeller

windmilling (fig. 20).

The application of power with flap neutral shifts the neutral
point no mors than 1 percent mean acrodynsmic chord over the wind-
milling condition (figs. 17 and 18). The destebilizing influence
of the increased de/da and 4Cr, JitA apparen‘bly g.s oiffset by the

stabilizing influence of mng, gifa, snd —za—— (figs. 20(a)}

and 21). With the single slotted flep the variation of neutral ' oo
point with power on, as previously discussed, makes the Iincrement S "
due to power very erratic. With the double slotted flep the effect

of power 1s.very small up toc a Cp of aboub 2.3 beyond which the

powsr-on neutral point moves rapidly forward (figs. 17(c) and 18)

As 18 the case with flap neutral, there is a balancing of the Sz
stabilizing and destabilizing effecte. The btail-off cenber of -
gravity ng, shifts rearward about 15 percent mean zeorodynamic

chord but this shift is offset primarily by the destebilizing -
effects of the increase in de/de and (40p/da),, with power
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(figs. 20(c) ard 21). At high values of Cp the rapid forward
movement of the nesubral point seems to be caused by several of
the paremeters. The valus of ng moves forward quite rapidly;
d(ay,/a)

- dCL" increases and, in carbination with the large negativg _

value of Cme’ produces a large degtabllizing effect as shown by
the last term of equation (1).

Longitudinal Control and Trim

Bince the tail-off pitching-nament cocefficients are highly
negative, especlally with the full-span double slotted flap
(fiz. 115, the tall load for trim is very large. FPreliminary
calculations showed thut with the conventlonal tall size used,
the tall would stall.-when the value of Cp with flap down was
reduced to a moderately low value. In order to preovent the
early tail stall & leading-edge slot was installed iIn the tail.
According to avallable data, a slot is more effective on cambered
sections, For this reason a cambersd sectlon (Clark Y) wae used
for the tail, Tests of the tail with and without the nose slot
filled showed that a large negetive angio of abttack and 1ifi coef-
ficient were obtalnsble with the elot opem (fig. 26). The Clark Y
gsectlion was mounted inverted since the tail load with flap deflscted
is dovmn. An alrplene having a slotted tail would prchably also
reguire an aedjustable stabilizer to cobtain the aedvantage of the
glot. In addition, the slot was assumed to be retractable so that
the slot could be closed when the airplane waes ¢rulsing with flaps
neutral.

The angle of attack of the horlzontal tall can be obtained
fram the following equation:

@ =@+ iy - ¢

For the double slotted flap with power on at—a = -8°
and CLb = 1.46, a, is computed by using figures 11 and 19(c).

Thus,
@ = -8° - 1,30 - 8°= .17.3°

Reference to the lsclated-tail data of figure 26 ahows that a tail
angle of attack of -17.3° is beyond the stall for the slot-filled
cagse but not for the slot-open case. Although the tail stall is not
apparent in the Cm of figure 11, tail stall is indicated by the

>
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sharp rise of elevator hinge moments with the nose slot filled.
Of course, at a value of * C;, lower than the valus tested, the
tail with the nose slot cpen would elsc stall. Teall sfall would
be indicsbed to. tho-pllot-by- a sudden vncondrollahla tendency of
the airplane to dlve. Even with the slot open, forward movement
of the center of gravity would be seriously limited with the
doubls slotted f£lap because of cxcessive tall loads required for
trim. A larger tall volwmes would improve this situation.

Elevator effectiveness (figs. 27 to 29) is normal and about
the same for each flap deflection except the double slotted flap
with the tsil slot open. The low elevator cffectiveness with the
double slotted flap ls explained by camparing the isolated tail
date with tail slot open and filled. (See fig. 26.) The parameters

4Cy, /48, and day/dd; eare smaller with slot open in the  ay

range through which the tail is operating. FElevator effectiveness
increases for the power-on conditions at the higher values of CL

where the tail enters the edge of the slipstream.

In summairizing the lmportance of the tail in regard to both -
stability and control, 1t sppears that reising the tail to provide
adequate stabillty removes it from regions of higher dynamic
Pressures which ars necessary for providing control in the case of
the tall tested. Control is possible with the tail as testod,
provided that the fleps are deflected grodunlly to avold a possible
tall stall.

CONCLUSTONS

The following conclusions wers yeached with regard to the
longitudinal characteristics of a low-wing, single-engine mcdel
with full-gpan flaps and an elevated horlzontal tail:

1. With flaps deflected, the application of power caused a
marked incresss in 1ift coefficlent incroment (0.16 for the single
slotted flap and 0.42 for the double slotbted flap).

2, Power increased the slope of the mmtrimmed 1ift curves
(0.034 increase for the double-slotted-flap case).

3. Deflecting either the single or double slotted flap
Increassd the stability slightly with power off.
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4, Addinz the windmilling propeller shifted the neutral point
forward between 1 and 5 percent mean asrodynamic chord., Power
shifted the neutral polnt no more than 1 percent mean aerodynamic
chord with flaps neubral.

5« With the single ‘slotted flap, power was, in general,
dostaeblilizing and the eoffect varled greatly wlth 1ift coefficlent.
With the double slotted flap, power had only a very small effect
on stability up to a 1ift coefficlent of about 2.3 when the neutral
point moved rapldly forward. The success in obtaining power-on
atability for most of the 1ift coefficient range was atbributed to
the tall boing out of the slipstrean.

6. Elevator effectiveness was adsquate and normal with flaps
neutral end with the single slotted flap. The stabllizer nose
slot, which was open with the double slotted flap duflected, caused
a low elevator effaectivencss.

T+ The stabllizer nose slot delayed the tail stall with the
double slotbed flap. Forward center-of -gravity itravel would be
geriously limited, however, even with the stabilizor slot open
because of excesslve tall losds required for trim.

8. A larger tail volume would provide a more satisfactory
control for the particular airplane model, especlally at the forward
center-of -gravity locations where larger downloads will bes rcquired ’ ’
by the tail for trim.

Langley Memorial Aeronantical Laboratory
Natlional Advisory Comittee for Aeronauti 8
Lengley Field, Va., October 29, 19k
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APPENDIX

METHOD OF OBTAINING DYNAMIC PRESSURE AND DOWNWASH AT THE TAIL
WHEN THE TATL LIFT CURVE IS NONLINEAR AND DERIVATTN

OF NEUTRAT-POINT EQUATION

Tebular procedure for determining g./q end € .- A simple

and commonly used method for obtaining-the effective dynamic-pressure
ratio q.b/q, especlally when lsolated-horizcental-tail data are

lacking, is as follows

aCp C___m 2 ~ Cmy

ai, -1
9t
Lo = o ke’ (a1)
9 ( ) Cme 1)

max t'l/ma:::
vhere ( Ei.?.‘.\ is the maximum value obtained by use of propeller-
Nt/ pax

off stabilizer curves (propeller-windmilling stebilizer curves may
be usea :‘Ln the absence of propeller-off data). The value

of ( may be es’cima'bed :E‘rom the slope of the tall 1ift curve

obtained from tests of the isolated tail or estimated from the
aspect ratio of the tail. The effectlive downwash angle ¢, in the
absence of isolated-horilzontal-teil data, may be obtained from the
following equations:

. tl Cu, - Cn,
*61 T Tao, cmg-c' (82)
i}
&L

. -1
Ty T T

€ -a,+1tlfu.tl (a3)
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When this method wes applied to the present mocdel, the agroement
betwesn qt/q end € obtalned by surveys mede with pitot-pitch
tubes end compnuted values of ¢ t/q and ¢ was fownd to be very poor.
This discrepsncy was traced to the fact that. the slops of the tail
1ift curve wes not linear, especially with the tall slot open
(fig. 26), aes was essumed with the foregoing method of couputation.
In order to deal with this situation a method of computation was
developed for whilch good agreement wae obtained with the aurveys
(fig. 19). Tn addition_to test data obtained with tail off and with
two stebilizer sstitings, test date are reguired of the tail 1ift -
coeffilclent againgt tail angle of atiack. .

At eny one angle of attack the pitching~-mounsnt coefficient Cm-t

provided by the tail is a funciion of the tail volume v, the

effective dynanic~pressurs ratio q,(‘/g, and the lall 1ift coofficlent
CLt. This relation is exprussed as

o = C ~C :
m m N _
ty 1 By, .
9y -
= Ly
CL'tl q t

from which

Likewlse, at eny one angle of attack, a change in stabilizer
Incidonce will.result 1n a chenge in tail 1ift coefficient b'CI't

end a corresponding change in pitching-moment coafficignt__ﬁcm, or

C

A% = Oy ™y

9¢
= B0 Tt

from which . . : e

q't ) ACm/V'.t
ADC
d Ly

X
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where

ACx =Cp -
Ly = Oy thl

When the isolated horizontal tail possesses a constant 1ift-
curve slove, the effective dynamic-pressure ratlo qt/q may be

deternined directly by dividing both sides of equatlon (45) by ALy
and transposing; thus

8y _ _ Gn/ais >
q - d'CLt (As)
oy, b

vhere dcm/dit is determined from stabllizeyr tests amnd d4Cy /dat

is determined from isolated-tail teste. Bguation (A6) is an
improvement over equation {Al) but is based on the assumption that
the slops of the 1lift curve is linear tharoughout the taill-angle-
of -attack range. In cases where the horizomtal tail does not
possess linear lift~cmrve cheracteristics the solution is not so.
direct. In attompting to use equations (Alk) and (A5), the tail
volums v, may be obtained from dimensions of the model,—end the
values of AC, and C, may be determined from the wind-turmel

deta at any one a.ngle of attack; however, three quentities remain
wknown, nanely, the related values CLt’ A%t, end qt/q' Since

there are cnly two equations, a direct solution is not feasible.
The following successive approximations are therefore made:

(1) Ir v, Cp,» &nd 4G, have been cbtalned for same one

engle of attack, a first avproximation of g/q is obtained from
equation (A6) by using an average value of dCL /clmt from isolated-

tail data.

(2) Upon substituting q./q into equation (Al), solving
for th and referring to the isolated-tail 1ift curve (fig. 26)
1

to determine the corresponding tail angle of aftack ay, the tail
angle of attack at 1,62 may be obtained from the rslatiomship

ay, = oy, + (1t = 1gy) (a7)
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(3) By referring to the isclated-tail 1ift curve, the value
of CL* that corresponds to %y is deteramined; the svaluation of_

8Ly = OLyy T Oy

is then made poesible.

(4) Upon substituting the value of ACLt into equation (AS5),

the valus of qt/q is obtained. If this value of qi/q is

numerically oqual to the value obtained in step 1, the effcective
value of q4/q has boen found. _

(5) If, on the other hand, the values of q/q are not in
agreement, the value of qt/q found in step ¥ 18 used in reveating

stops 2 through 4. A more rapld convergence is scmetimes found to
cccur if the average of the last two values of qf/q ara wesd for
the next approximation. . .

(6) Steps 2 through 5 are repeated wmtil two successive
values of g./q &are in agrsenent wlthin the accuracy of the data.

The effective dynamic-pressure ratio has then been deterwined.

(7) When the eflfnective dynamic-pressure ratio has been
doterained and the value of atl can then be obtained frou

figure 26(c) the downwash angle is cbtailned fram the relaticn

€ mo+ iy -y (48)

Table ITI presents a solution for g4/q¢ =and € for one
angle of attack of ihe model (fig. 1) with double slotted flaps
down and powsy on. The pertinent aerodynamlc date are presenied in
figures 11l-and 26. The procedure for obialning additional data
neaded to determine qt/q and ¢ 1s 1llustrated in figure 30. The

initial approximation of qy/q was obtained by using equation (A6).

Grephical procedure for determining g4/q and €.- The use of

a tebular procedurc such as exemplified by the 1llustrative soluticn
of table IIT will be found rather tedious when a renge of angle of
attack end flight conditionsis being investigated. In order to
reduce appreciably the time and to simplify the solution to scme
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extent, a chart has been prepared for dstermining the wvaluse
of qt/q and tall angle of attack graphicelly. This chert,

shown as two separate parts by figures 31(a) and 31(b), has been
found to be very effective when placed side by side with the
families of curves lald out to about twice the scale of figurs 31.

The family of curves in the upper part of figure 31(a) is the
graphical representatlon of equation (A’-t»), the lone curve in the
lower part of figure 31(a) is a specific isolated-tail 1ift curve
for the model in gquestion. The family of curves in figurs 31(d) is
the grephical representation of equation (A5).

. In order to use the chart it wlll be found desirasble to set up
e table such as table IV in which the first seven colums are the

same &8 those of table ITT. For a given angle Qf ahtack, horizontal

A
reference lines corresponding to the velues of —= Cm end _..G.‘L

Vi, Vi
given in teble IV chould firs+ e drawn as shown in figures 31(a) -
emd 31(b). Thess two lines form ‘the reference lines for the
successive approximations for the model angle of attack concerned.

By use of the modsl data considersd in lllustrating the ~
tebuler approach of table IV, e intersection of the first approxl-

mation of qt/q (1.h94) with *v"'j' (0.985) should now be located

L
(W

in figure 31(a); the first approximation of CL is thus determined.

By projecting this intersection dowm to the isolated tall 1lift curve
and using a specia]ly deviscd cardboerd or celluloid scale (shown
in fig. 31l)having sidss at right angles to each other and graduated
to conform to the ordinates emd abscissa of the 1ift curve, the
value of ACL (0.503) resulting from Aly (8.3°) (see fig. 30) is

readily d.eteminad (fiz. 31{=)).
At the mterser'ticm of this first approximation of L\CL (0.403)

with m (-—0 496)  in figure 31{b), the second approximation of q.b/q
Vg

mey be read from the bobtiom scalo. Since this sccond approximation

of qi/a 4s 2ot In agresmont witk the rirst approzimatiom, the

entire procedure 1s reveatved as many times as is necessary to obtain
agrasment betwesn two ccusecntive values of qt/q. Anen the
procedure is continued, the lest value of.* qt/q obtained should be

used. for the next successive appreximation. Although figures 31(a)
end 31(b) merely show by means of the dashied llnes the work for
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obtaining the second approximation of a./q, table IV gives the
succossive values of - q./q and ACy, obtalned e well as the

firal enswer for q./q end ¢. The value of ¢ 1is obtained

fron a,, which should be read from the teil 1ift curve
(fig. 31(a)) during the final approximation.

The solution of q,/g in teble IV illustrates the discrepency

rosulting from the wse of the approximate method formerly used to
obtain qt/q by essuming A linsar iail 1ift curve. The present

rofined method gives a value of qi-/q = 1.115 (colum (19), table IV)
whereas the approximete mothod gives a. value of qt/q = 1.hkohL
(column (7), teble IV) or about 3B-percent error.

Comparison of the tebular and graphical procedures for
determining gqy/q- and €.- The graphical eolution as presented—

provides a very good degras of accuracy. Comparismms between the
tebular aporoach, such as table IIX, and the graphical approech

to the solutiom of qt_.,"g end € =at the tail for various models has
shown consistent egreoment through the second decimel place. The

use of tho graphical approach pormits a better them 60-porcent saving
in time when compared to a tabular solutiom using a slide rule, and
atout a LO-percent saving in time when compared to a tebular solution
using a calculeting machine, particularly when the tail 1ift curw

is nonlinsar.

Neutral-point squetion.- A nentral point is defined es & center-
of ~gravity location for which the curve of G, against C; has zoro

slops at the trim 1ift coefficilent CL‘b The measursment of the
slove cm/cL with tail off cme gives the tail-off aerodynamic
center nyj; with tail on, C, gives the neutral point B, . (see
fig. 32(a).)

A* trim, tho wing-fusclage piltching-moment cocfficlent equals
ihe negative of the pltching-moment coefficlent contribuled by the
‘g1l. For the center of gravity at the neutral point—this relation
mey be exvnressed by

Cmﬁ * CIrb (n‘p_" ng) = vt‘bCLt (a4/q) (49) .
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The term Cme reprosents the pitching moment of the wing

fuselage ebout the tail-off meuntral point n  at trim. (This term

may be evaluated from the tail«off pltching-moment data o'btained. from
figure 32(b).)

Differentiating equation (A9) with respect to Cy, éj.ves

v Ltl-.a.'f.gi
tp Ty o/ q

A N A -7 o)

The derlvatives are to be evaluated with the trim veriation of Tc‘
with Cp. Solving equation (A9) for vtbCLt and substituting in
equation (Al0) yields

q
) n - me Oy (p - mo) (0 < %)_g (A11)
| R 14,/4 4y} (ch/aa)b
Solving for oy gives
Wry oy d.e'\
tb d'd"b (l i Cme
= +
Pp = o f d(qt/qr c 1 - (422)
(ch\ L T Ay, | b dled/a) /e
2 ol e
c o
L

Derivation of (d&Cy/da)y .- The term (aCz,/aa),, 18 derived as
Follovs (see fig. 32(c)):

CI'b - cL(tail off) * th

L(tat off)(n‘P - n5) = 0, (14/c)
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/.
o T
Iy “Lrany ore) T T(tan off)K zt/c)

n -n
= L2
“iy ™ (rat1 ore) \" Zt/c>

(?.CT;  ian 2@( . —f__)
de. o G \ /o

In order tc use the preceding eguatiom, the neutral point must he
Imown.
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TABIE I

MODEL WING AND TAIL-SURFACE DATA

27

) Horizontal Vertical
Wing tell tail
Area, 8q ft 9.1"1"0 l.m 1'250
Span, £t 7.458 - 2.542 1.505
Aspect ratio 5.91 3.36 1.81
Taper ratio O.4h5 0.438 —ecae
&Dihedral, deg 5.8 0 ———ae
Sweepback, querter
chord line, deg 1.9 L T B
Root section NACA 2215 Clark Y (inverted) NACA 0009
Tip section NACA 2209 Clark Y (inverted) | NACA 000L.5
Angle of incidence .
b &t root, deg 1.00 -l.30r 7 =1.50
Angle of incidence
at tip, deg 1.00 -l.30r 7 -1.50
Mean serodynemic center, £t 1.36 cemmm ] emee-
Root chord, ft 1.80 1.141 1.272
Theoretical tip chord, ft 0.8 0.500 |  eeae-

TABILE II

;'Dihedral measured with respect to chord plane.
Angle of incidence measured with respect to fuselage center line.

ATRPIANE CONTROL-SURFACE DATA

Elevators Rudder | Fleps
Percent span 99.5 99.1 93.0
Aree behind hinge line, sq ft 0.621 0.506 | =e==
Balence area, sq It 0.131 Minimm| ~e--
Root-mean-squere chord behind hinge line, ft 0.26h 0.353 | «===
Distence to hinge line from normml
center of gravity, ft 3.721 3611 | wm--

NATIONAL ADVISORY
COMMITTEE XOR AERONAUTICS
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TARLE IIX
FROCIDURE FOR DETERMINATION OF XFFEOTIVE DYNKAMIC-PRESSURE RATIO AND

EFFECTIVE DOWEWASE ANGIE AT THE BORIZORTAL TAIL OF AN AINPTANE MOIEL

Configurationt Double slotted flap defleoted and power om.

=00, o. = .1,3% 1, = 7.0° . = 0,0k0
o 0% vy ¥ OSR Ly, = A% 4y, '(Et.w

Aercdynamic data cb d from figures 10 and 1l. .
a0y
e q T!';
Tnitial G Telue approximated from (%)1 " -
b/
(@
(1) (2) (3) W) (3 (6) (7 (8) [£)] (10)
®, Oy (
e ‘m O % | W Y ':2)1 %y | "0 St
Ly = L] 1, = 7.0° | Tetd oty m—(-)-;t 2 i -0 = D -8 | TR (9) 4 (14 - 1)
) 0317 0,581 0.841 | -0.496 0.995 | 2.8 | -0.659 -9.68 258
{11) (12) (13} () (13} (16) Qn {18)
e r: )
or"? é ")1 (T')e c:"1 1 “to etq—,‘, ( ]

!'::"t:ﬂ ay - (8 _{ﬁ’_ _{%T Trom tall (15) « (ifq - ig,l) n:r:.:n a7 - (I

0856 0.h03 1en | -0.80 -12.58 .28 -0.360 a.aho

(19) (e0) (21) (20) (23) (2h) (25) (6} (27)

2y E )

Bl e | ™ “ e, ey | G| Bt
"8!?)’ _{%’_ From tatl (BN + (24 - 10 From tall | oy | (o) _% _{gy From tafl
1127 | -0.07k -13.99 5.69 “0.k32 0.4k2 1.123 0.870 -2k .02

(e8) (e5) (%) Gy | G | G (3 (39)
£
%tz OL, (1), (%5 Ly | % e ey
@T) + (1y = 2ey) | TRMI |20y - (26) | -8y [~ 1 ORI | (33) ¢ (1 - 1)) | Tomeet
=5.72 ~0.h3h 0.kkk 1.1n7 |-0.88 =1h.05 -5.T% 0.437
(36 {30 ~ (38) (3%) (ko) (1) (k2) (k3)
4+ q

@I"‘)5 CT)G 01“1 “a Fep L @c"t)s (é'r
- | -G |8y | TR e -ty | PRet | o000 -fy

0.k45 1.118 -0,883 «1%,07 -5.77 -0.k38 0.k4% 1.125%

N
Effective ' 1035, sipos oy = =2k,
€mgas ""1 - %1
=0 - 1.3 = (-14.}}
- 12.8°
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TABIE IV

29

TABIE FOR USE WITH THE GRAFHICAL SOLUTION OF EFFECTIVE DYNAMIC-PRESSURE RATIO

Configuration:

AND EFFECTIVE DOWNWASH ANGIE AT THE HORIZONTAL TATIL OF AN ATRPIANE MOTEL

Double slotted flep deflected and power om.

ac
o =0% v, = 0.532; 1, = -1.3% 1, = 7.0% -—Lb = 0,040
7 1 2 3% /amo

Aerodynamic dsta obtained from figures 10 and 11.

s

a
Effective -i— = 1.115, since ay, = -14,1

€ =g + 1'b1'°"t1

=0 - 1.3 - (-1k.1)

= 12,8°

Initiel 2.1.’ value approximeted from (Eqﬁ) 1 = -
tlde /gm0
(1) (2) (3) (%) (5) (6) 7 (8) () (10)
c
a0 mg
m 1 g q‘t

R T T M T B B (T)l @ory), (T)a o),
o} -0.317 | -0.581 [-0.841 | -0.496 03985 1.hok 0.403 | 1.231 0.4%0
(11) (12) (13) (k) (15) (16) (17) (18) (19)

a¢ ) | fac £0) G (Sz) ay

(q)3 @:193 (q)h ( Lk)k (q)5 ( I'b)'i 1/ (%95 a/7
1.127 -o.hhz 1.022 | O.hhk | 1.117 o.kks | 1.115 0.5 1.11%

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS




8.8 Dihedral

Chord p/
24 diom. (Cherd prane)

\

Geamelric characterstics

Wing area,sq ff. . .. ... 5.44

MACH. . /.36

CQ.(percentMAC) . . .. . .. R&.70
Wing sectian

o0 ... NACA RRIS

Tie oo NACA 2R09

Wing incidence,dey.. . , . . . 10

L_ 56
2L

Flap neatral

/80— L 39—
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dealed ? R

Singe SIoT78q fap  Double sioted #ap
Reor” sections.
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Figure 4.- Isolated tail agsembly mounted in Langley 7- by 10-foot
tunnel.
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Figure 5.- Plan-form and blade-form curves for the model propeller.
D, diameter; R, radius to tip; r, station radius; b, section chord;
h, section thickness. RAF 6 airfoil section.
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Fig. 6
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Figure 28.- Continued.
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Figure 29.- Effect of elevator deflection on the aerodynamic charac-

teristics of the model as a low~wing airplane with full-span double
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Figure 31.- Chart for graphically determining the effective dynamic-
pressure ratio and effective tail angle of attack from model tail-on,
tail-off, and isolated-tail data. The broken lines represent the
final approximation for the sample solution of Table IV.
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